Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

На правах рукописи

Гуляев Денис Анатольевич

О задаче с граничными условиями третьего рода, одно из которых содержит спектральный параметр

Специальность 01.01.02 – дифференциальные уравнения, динамические системы и оптимальное управление

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва – 2013

Работа выполнена на кафедре функционального анализа и его применений факультета вычислительной математики и кибернетики Московского государственного университета имени М.В.Ломоносова.

Научный руководитель:	академик РАН, профессор
	кафедры функционального анализа и его
	применений факультета ВМК МГУ им М.В.Ломоносова
	Моисеев Евгений Иванович
Официальные оппоненты:	доктор физико-математических наук, профессор
	кафедры высшей математики
	Московского государственного университета
	приборостроения и информатики
	Макин Александр Сергеевич
	доктор физико-математических наук, профессор
	кафедры прикладной математики и информатики
	Самарского государственного
	технического университета
	Репин Олег Александрович
Ведущая организация:	Фелеральное госуларственное
	бюлжетное образовательное учрежление
	высшего профессионального образования
	"Орловский государственный университет"

Защита состоится "20"ноября 2013 года в 15 часов 30 минут на заседнии диссертационного совета Д 501.001.43 при Московском государственном университете имени М.В.Ломоносова, расположенном по адресу: 119991, Российская Федерация, Москва, ГСП-1, Ленинские горы, 2-й учебный корпус, Факультет ВМК МГУ имени М.В.Ломоносова, аудитория 685.

С диссертацией можно ознакомиться в научной библиотеке Факультета ВМК МГУ имени М.В.Ломоносова.

Автореферат разослан "17" октября 2013 г.

Ученый секретарь диссертационного совета, профессор доктор физикоматематических наук Е.В. ЗАХАРОВ

Общая характеристика работы

Актуальность темы. Задачи со спектральным параметром в граничных условиях возникают в ряде математических моделей для уравнений параболического, гиперболического и смешанного типов. Еще М. Пуассон в своих мемуарах решал задачу о продольном движении груза, подвешенного к концу упругой нити. А. Кнезер в работе изучал колебания однородной струны, в некоторых точках которой сосредоточены массы. А.Н. Крылов и С.П. Тимошенко указывали на актуальность задачи о продольных колебаниях стержня в связи с теорией индикатора паровой машины и прочих измерительных приборов. К этой задаче сводится изучение крутильных колебаний вала с маховиком на конце, разного рода "дрожащих" клапанов и крутильных колебаний шкива с подвешенной на конце массой. Задача подобного плана приобрела особую актуальность еще и в связи с изучением устойчивости вибраций крыльев самолета. Аналогичные математические модели возникают в задачах об изучении электромагнитных колебаний в системах с сосредоточенными емкостями, самоиндукциями и задачах о распространении тепла в средах, граничащих с сосредоточенными теплоемкостями, которые рассматривались А.А. Самарским, А.А. Виттом и С.П. Шубиным . Недавно интерес к задачам со спектральным параметром в граничном условии возник в связи с теорией осреднения.

В основе спектрального метода решения ряда задач для уравнений смешанного параболо-гиперболического типа лежат за-

дачи со спектральным параметром в граничных условиях. Начало развитию спектральной теории краевых задач для уравнений смешанного типа положили в конце семидесятых - начале восьмидесятых годов двадцатого века работы Е.И. Моисеева, С.М. Пономарева, Т.Ш. Кальменова. Им предшествовали глубокие исследования Ф. Трикоми, С. Геллерстедта, М.А. Лаврентьева, Ф.И. Франкля,

И.Н. Векуа, А.В. Бицадзе, Л.В. Овсянникова и других математиков по вопросам классической разрешимости краевых задач для уравнений смешанного типа, причем, как правило, задача сводилась к сингулярному интегральному уравнению на линии изменения типа. В этих работах указывалось на актуальность проводимых исследований по теории эллиптикогиперболических уравнений, а позднее в работах Я.С. Уфлянда, А.Г. Шашкова, А.М. Нахушева, Х. Азиза и Э. Сеттари было обращено внимание на математические модели, приводящие к параболо-гиперболическим уравнениям.

Задачи со спектральным параметром в граничных условиях, как правило, несамосопряженные. Большой вклад в науку был внесен академиком В.А.Ильиным, получившим фундаментальные результаты по спектральной теории для несамосопряженных дифференциальных операторов. В опубликованной в 1983 г. работе А.А. Шкаликова построена общая теория спектральных задач с параметром в граничных условиях. Им доказаны теоремы кратной базисности, разложения и полноты для выделенных классов краевых задач: для обыкновенных дифференциальных уравнений: регулярных, почти

регулярных и нормальных. А.М. Ахтямовым в цикле работ предложены алгоритмы решения задач со сложным вхождением спектрального параметра в граничные условия, выписаны соответствующие формулы диагностики механических систем и строительных конструкций.

Общий подход спектральным методом к изучению краевых задач для уравнений эллиптико-гиперболического типа предложен в работах академика Е.И. Моисеева. Им для обоснования представления решений в виде биортогональных рядов установлены тонкие результаты об условиях базисности систем синусов и косинусов.

В работах Е.И. Моисеева и Н.Ю. Капустина изучены вопросы полноты, минимальности и базисности в пространстве $L_p, p >$ 1 систем корневых функций классических задач со спектральным параметром в граничных условиях, возникающих в теории параболо-гиперболических уравнений, а также получены условия, обеспечивающие сходимость разложений в классе непрерывных функций. В цикле работ Н.Ю. Капустина спектральным методом рассмотрены вопросы о максимальной гладкости обобщенного решения задачи Трикоми для параболо-гиперболического уравнения с начальной функцией из класса суммируемых функций, о корректности постановки смешанной задачи со смешанной производной в граничном условии для оператора теплопроводности, возникающей при описании процесса теплопереноса параболо-гиперболическим уравнением. Изучены: полнота, минимальность и базисность систем корневых функций в задачах с комплекснозначным

физическим параметром и квадратичным вхождением спектрального параметра в граничное условие.

В работах З.С. Алиева, Н.Б. Керимова, З.С. Алиева, Н.Б. Керимова и В.С. Мирзоева рассмотрены вопросы базисности в пространстве $L_p, p > 1$ систем собственных функций ряда краевых задач для обыкновенных дифференциальных уравнений второго и четвертого порядка с линейным вхождением спектрального параметра в граничные условия. Доказаны осцилляционные теоремы и получены асимптотические формулы для собственных значений и собственных функций. В некоторых случаях используются свойства пространств с индефинитной метрикой. Классические результаты по этим вопросам содержатся в работах А.Ф. Никифорова и В.Б. Уварова, Т.Я. Азизова и И.С. Иохвидова.

В связи с рассматриваемыми в диссертации вопросами отметим работы И.Ш. Ахатова и А.М. Ахтямова, Ж. Бен Амары,

Ж. Бен Амары и А.А. Шкаликова, Б.Т. Билалова,

В.Д. Будаева, В.В. Власова, Г.Г. Девдариани,

Т.Д. Джураева, В.П. Диденко, В.А. Елеева,

В.И. Жегалова, А.Н. Зарубина, Н.Ю. Капустина и

Т.Е. Моисеева, А.Г. Костюченко, А.А. Шкаликова,

А.Г. Кузьмина, В.М. Курбанова, В.Б. Лидского,

Ж.Л. Лионса, И.С. Ломова, А.С. Макина,

Д.Б. Марченкова, С.В. Мелешко, В.А. Нахушевой, З.А. Нахушевой, А.А. Полосина, А.В. Псху, С.П. Пулькина,

Л.С. Пулькиной, О.А. Репина, О.А. Репина и С.В. Ефимовой,

Е.М. Русаковского, К.Б. Сабитова, К.Б. Сабитова и Н.В. Мар-

темьяновой, К.Б. Сабитова и Л.Х. Рахмановой, К.Б. Сабитова и Э.М. Сафина, В.А. Садовничего, М.С. Салахитдинова, М.М. Смирнова, А.П. Солдатова, Е.А. Уткиной, С. Фултона, М.М. Хачева, А.А. Шкаликова, М. Розо, Ж. Уолтера.

Цель работы. 1) Изучение полноты, минимальности и базисности в пространстве L_p , p > 1 системы собственных функций задачи с граничными условиями третьего рода, одно из которых содержит спектральный параметр и коэффициент в этом условии, вообще говоря, комплекснозначный; 2) формулировка условий, обеспечивающих сходимость соответствующих спектральных разложений в классе W_2^m ; 3) изучение вопроса о равномерной сходимости на отрезке спектральных разложений по выделенному базису пространства L_2 и по всей системе собственных функций; 4) решение спектральным методом краевых задач для параболического и парабологиперболического уравнения, приводящих методом разделения переменных к рассматриваемой спектральной задаче.

Методы исследования. Для изучения вопросов базисности в пространстве $L_p, p > 1$ вводится вполне непрерывный оператор на основе выделенной минимальной подсистемы с предварительным построением биортогонально сопряженной системы и выводом асимптотических формул для собственных значений и собственных функций. Сходимость спектральных разложений в классе непрерывных функций, установленная на основе асимптотических формул для функций биортогонально сопряженной системы и с учетом граничных условий нелокального характера.

Научная новизна. Получены новые результаты по вопросам полноты, минимальности и базисности в пространстве $L_p, p > 1$ системы собственных функций задачи с граничными условиями третьего рода, одно из которых содержит спектральный параметр и коэффициент в этом условии комплексный. Сформулированы условия, обеспечивающие сходимость соответствующих спектральных разложений в классе W_2^m . Изучен вопрос о равномерной сходимости на отрезке спектральных разложений по выделенному базису пространства L_2 и по всей системе собственных функций. В виде билинейных рядов выписаны решения актуальных краевых задач для параболического и параболо-гиперболического уравнений с граничным условием третьего рода на нехарактеристической линии границы области.

Практическая и теоретическая значимость результатов. Полученные в диссертации результаты и подходы к исследованиям могут быть использованы при дальнейшем изучении краевых задач для параболического и параболо-гиперболического уравнений. Возможно широкое применение этих результатов при математическом моделировании процессов колебаний нагруженных тел, газодинамических процессов, различных физических явлений в теории теплообмена и массообмена в капиллярнопористых средах.

Апробация работы. По материалам диссертации были сделаны доклады на семинарах и конференциях: научно-исследовательский семинар кафедры функционального анализа и его применений факультета ВМК МГУ под руководством ака-

демика Е.И.Моисеева, конференция МГУ "Ломоносовские чтения" (2012, Москва), 38-я международная конференция "Приложение математики в инженерных науках и экономике" (2012, Болгария).

Публикации. Основное содержание и результаты диссертации опубликованы в 3 печатных работах, две из которых в журналах, входящих в Перечень ведущих рецензируемых научных журналов и изданий ВАК РФ. Список работ приведен в конце автореферата.

Структура и объем диссертации. Диссертация состоит из введения, двух глав, списка литературы включающего 194 наименования. Объем работы 78 страниц.

Содержание работы

Во введении дается обзор литературы, кратко излагается содержание работы.

В параграфе 1 главы 1 рассматривается следующая спектральная задача

$$X''(x) + \lambda X(x) = 0, \quad 0 < x < 1, \tag{1}$$

$$X'(0) = bX(0), \quad X'(1) = d\lambda X(1)$$
 (2)

с постоянными коэффициентами $b \neq 0$ и d > 0.

Спектральная задача (1)-(2) не имеет нулевого собственного значения, поэтому общее решение уравнения (1) в случае $\lambda \neq 0$, удовлетворяющее первому граничному условию, можно записать в виде:

$$X(x) = \frac{b\sin\sqrt{\lambda}x}{\sqrt{\lambda}} + \cos\sqrt{\lambda}x.$$

Записав для этой функции второе граничное условие, получим характеристическое уравнение задачи (1)-(2)

$$(1+bd)\sqrt{\lambda}\sin\sqrt{\lambda} = (b-d\lambda)\cos\sqrt{\lambda}.$$
(3)

Если bd = -1, то уравнение (3) имеет один отрицательный корень $\lambda = -1/d$ и бесконечное множество положительных корней $\lambda = [\pi/2 + \pi(n-1)]^2$, n = 1, 2, 3, ... В случае bd > -1, b > 0, все корни уравнения (3) – положительные. При значениях параметров bd < -1 или bd > -1, b < 0 также имеется одно отрицательное собственное значение, а все остальные собственные числа расположены в положительной части действительной оси.

Присвоим нулевой индекс любому собственному значению, а все остальные занумеруем в порядке возрастания. Собственные функции задачи (1)-(2) определяются по формуле:

$$X_n(x) = \sqrt{2} \left[\frac{b \sin \sqrt{\lambda_n} x}{\sqrt{\lambda_n}} + \cos \sqrt{\lambda_n} x \right], \quad n = 0, 1, 2, \dots$$

(в случае $\lambda_n < 0$ синус и косинус гиперболические). Функции биортонормированной системы $\{\Psi_m(x)\}, m = 1, 2, 3..., к$ системе $\{X_n(x)\}, n = 1, 2, 3, ...,$ имеют вид:

$$\Psi_m(x) = \frac{\left[X_m(x) - \frac{X_m(1)}{X_0(1)}X_0(x)\right]}{\left[\int_0^1 X_m^2(x)dx + dX_m^2(1)\right]}.$$
(4)

Наряду с задачей (1)-(2) рассматривается спектральная задача

$$Y''(x) + \lambda Y(x) = 0, \quad 0 < x < 1,$$
(5)

$$bY'(0) = -\lambda Y(0), \quad Y(1) = -dY'(1)$$
 (6)

для системы $\{Y_n(x)\}, n = 0, 1, 2, ..., функции которой вычисляются по формуле$

$$Y_n(x) = \frac{X'_n(x)}{\sqrt{\lambda_n}}.$$

Функции биортонормированной системы $\{\varphi_m(x)\}, m = 1, 2, 3, ...,$ к системе $\{Y_n(x), n = 1, 2, 3, ...\}$, имеют вид

$$\varphi_m(x) = \left[Y_m(x) - \frac{Y_m(0)}{Y_0(0)} Y_0(x) \right] / \left[\int_0^1 Y_m^2(x) dx + \frac{1}{b} Y_m^2(0) \right].$$

Системы $\{X_n(x)\}$ и $\{Y_n(x)\}, n = 1, 2, 3, ...,$ образуют базис в пространстве $L_p(0, 1), p > 1$, а в случае p = 2 даже базис Рисса. В настоящем параграфе доказано общее утверждение для спектральной задачи (1)-(2) в предположении, что параметр d - любое комплексное число, отличное от нуля, $-\frac{\pi}{2} < \arg \sqrt{\lambda_n} \leq \frac{\pi}{2}, n = 0, 1, 2, 3, ..., \lambda_0$ - по-прежнему, любое собственное значение, а все остальные занумерованы в порядке возрастания их абсолютных величин.

Теорема 1. Если

$$d \notin \{\frac{b\cos z - z\sin z}{bz\sin z + z^2\cos z}\},\$$

где $\{z\}$ - множество комплексных корней уравнения $\frac{(b^2 - z^2)\sin z \cos z}{z} + b^2 + z^2 + 2b\cos^2 z = 0,$ (7)

то система $\{X_n(x)\}, n = 1, 2, 3, ..., собственных функций за$ $дачи (1)-(2) является базисом в пространстве <math>L_p(0, 1), p > 1,$ (базисом Рисса p = 2).

Замечание. Уравнение (7) при некоторых значениях параметра b, например при b = -1/2, имеет решение и на действительной оси. Можно поставить нелокальную спектральную задачу, описывающую систему $\{X_n(x)\}, n = 1, 2, 3, ...,$ собственных функций локальной задачи (1) - (2). А, именно, следующую спектральную задачу

$$\begin{aligned} X''(x) + \lambda X(x) &= 0, 0 < x < 1, \\ X'(0) &= bX(0), \\ X(1) + \frac{1}{d(b\sin\sqrt{\lambda_0} + \sqrt{\lambda_0}\cos\sqrt{\lambda_0})} \times \\ &\times \int_0^1 (b\sin\sqrt{\lambda_0}x + \sqrt{\lambda_0}\cos\sqrt{\lambda_0}x)X(x)dx = 0, \\ (1 + bd)\sqrt{\lambda_0}\sin\sqrt{\lambda_0} &= (b - d\lambda_0)\cos\sqrt{\lambda_0}. \end{aligned}$$

В данной задаче граничное условие не содержит спектрального параметра.

В параграфе 2 главы 1 получены условия, обеспечивающие сходимость ряда

$$\sum_{n=1}^{\infty} \left(\int_0^1 f(t) \Psi_n(t) dt \right) X_n(x) \tag{8}$$

в классах $W_2^m(0,1)$, где система $\{X_n(x)\}, n = 1, 2, 3, ...,$ является подсистемой системы собственных функций задачи (1) - (2) без любой удаленной собственной функции, которой присвоен нулевой индекс, а собственные значения занумерованы в порядке возрастания. Соответственно функции $\Psi_n(x), n = 1, 2, 3, ...,$ являются элементами биортогонально сопряженной системы.

Теорема 2. Пусть функция f(x) удовлетворяет условиям:

$$f(x) \in W_2^{2n}(0,1),$$

$$J \equiv f(1) + \frac{\int_0^1 (b \sin \sqrt{\lambda_0} t + \sqrt{\lambda_0} \cos \sqrt{\lambda_0} t) f(t) dt}{d(b \sin \sqrt{\lambda_0} + \sqrt{\lambda_0} \cos \sqrt{\lambda_0})} = 0,$$

$$f'(0) = bf(0), \dots, f^{(2n-1)}(0) = bf^{(2n-2)}(0), n \ge 1,$$

$$f'(1) + df''(1) = 0, \dots, f^{(2n-3)}(1) + df^{(2n-2)}(1) = 0, n \ge 2$$

Тогда ряд (8) сходится в метрике $W_2^{2n}(0,1)$. Пусть функция f(x) удовлетворяет условиям:

$$\begin{split} f(x) &\in W_2^{2n-1}(0,1),\\ J &= 0, n \geqslant 1,\\ f'(0) &= bf(0), \dots, f^{(2n-3)}(0) = bf^{(2n-4)}(0),\\ f'(1) &+ df''(1) = 0, \dots, f^{(2n-3)}(1) + df^{(2n-2)}(1) = 0,\\ J &= 0, n \geqslant 2. \end{split}$$

Тогда ряд (8) сходится в метрике $W_2^{2n-1}(0,1)$.

В параграфе 1 главы 2 рассмотрен вопрос о равномерной сходимости на отрезке [0, 1] разложений по собственным функциям спектральной задачи (1) - (2). Справедлива следующая

Теорема 3. Пусть $f(x) \in C[0,1]$. Ряд Фурье (8) сходится равномерно на отрезке [0,1] тогда и только тогда, когда сходится равномерно ряд Фурье для функции

$$f(x) + \frac{\int_0^1 (b\sin\sqrt{\lambda_0}t + \sqrt{\lambda_0}\cos\sqrt{\lambda_0}t)f(t)dt}{d(b\sin\sqrt{\lambda_0} + \sqrt{\lambda_0}\cos\sqrt{\lambda_0}t)}$$

по ортонормированному базису $\{\sqrt{2}\cos\mu_n x\}, n = 1, 2, 3, ...,$ где $\mu_n = \frac{\pi}{2} + \pi (n-1).$ Следствие. Пусть f(x) - функция из класса Гельдера $C^{\alpha}[0,1]$ с любым положительным показателем α и выполнено условие

$$f(1) + \frac{\int_0^1 (b\sin\sqrt{\lambda_0}t + \sqrt{\lambda_0}\cos\sqrt{\lambda_0}t)f(t)dt}{d(b\sin\sqrt{\lambda_0} + \sqrt{\lambda_0}\cos\sqrt{\lambda_0}t)} = 0.$$

Тогда ряд Фурье (8) сходится равномерно на отрезке [0,1]. В параграфе 2 главы 2 рассматривается вопрос о сходимости спектральных разложений по всей системе собственных функций.

Теорема 4. Пусть $f(x) - функция из класса Гельдера <math>C^{\alpha}[0,1], \alpha > 0$. Тогда она представима в виде равномерно сходящегося на отрезке [0,1] ряда

$$f(x) = \sum_{n=0}^{\infty} \frac{df(1)X_n(1) + \int_0^1 f(t)X_n(t)dt}{dX_n^2(1) + \int_0^1 X_n^2(t)dt} X_n(x).$$

по системе собственных функций задачи (1) – (2).

В параграфе 3 главы 2 рассматривается смешанная задача для уравнения теплопроводности

$$U_t(x,t) = a^2 U_{xx}(x,t)$$
 (9)

в области $D = \{(x,t); 0 < x < 1, 0 < t < T\}$ с граничными условиями

$$U'_{x}(o,t) = bU(0,t), \quad U'_{x}(1,t) = -dU'_{t}(1,t), \quad (10)$$
$$b \neq 0, \quad d > 0$$

и начальным условием

$$U(x,0) = f(x).$$
 (11)

Требуется найти непрерывную в замкнутой области \overline{D} функцию U(x,t) из класса $C^1(\overline{D} \cap \{t > 0\}) \cap C^{2,1}(D)$ для уравнения (9) с граничными условиями (10) и начальными условиями (11), $f(x) \in C[0,1]$.

Лемма 1. Решение задачи (9)-(11) единственно.

На основании результатов теоремы 4 и леммы 1, установлено следующее утверждение.

Теорема 5. Пусть f(x) - функция из класса Гельдера $C^{\alpha}[0,1], \alpha > 0$. Тогда решение задачи (9)-(11) можно представить в виде билинейного ряда

$$U(x,t) = \sum_{n=0}^{\infty} \left[df(1)X_n(1) + \int_0^1 f(t)X_n(t)dt \right] \times$$
(12)

$$\times \left[dX_n^2(1) + \int_0^1 X_n^2(t)dt \right]^{-1} X_n(x)e^{-a^2\lambda_n t}.$$

Также в этом параграфе рассмотрена краевая задача для уравнения смешанного типа. Введены обозначения:

$$D = \{(x,t) : 0 < x < t+1, 0 < t \le 1/2; 0 < x < 2-t, 1/2 < t < 1\},$$
$$D_1 = D \cap \{x < 1\}, D_2 = D \cap \{x > 1\}.$$

Рассматривается параболо-гиперболическое уравнение

$$U_t(x,t) = a^2 U_{xx}(x,t), \quad (x,t) \in D_1,$$
(13)
$$U_{tt}(x,t) = U_{xx}(x,t), \quad (x,t) \in D_2.$$

Пусть требуется найти функцию U(x,t) из класса $C(\overline{D}) \cap C^1(D) \cap C^1(\overline{D_1} \cap \{t > 0\}) \cap C^{2,1}(D_1) \cap C^2(D_2)$, удовлетворяю-

щую уравнению (13) и граничным условиям

$$U_{x}(0,t) = bU(0,t), \quad 0 < t < 1,$$

$$U(t+1,t) = 0, \quad 0 \le t \le 1/2,$$

$$U(x,0) = f(x), \quad 0 \le x \le 1,$$

$$f(x) \in C^{\alpha}[0,1], \quad \alpha > 0, \quad f(1) = 0.$$
(14)

Используя обозначение

$$f_n = \frac{\int_0^1 f(x) X_n(x) dx}{\int_0^1 X_n^2(x) dx + X_n^2(1)}, \quad n = 0, 1, 2, ...,$$

в котором система $\{X_n(x)\}$ - множество решений спектральной задачи (1)-(2) при d = 1, решение задачи (13)-(14) записывается в виде

$$U(x,t) = \sum_{n=0}^{\infty} f_n X_n(x) e^{-a^2 \lambda_n t}, \quad (x,t) \in D_1,$$
(15)
$$U(x,t) = \sum_{n=0}^{\infty} f_n X_n(1) e^{-a^2 \lambda_n (t+1-x)}, \quad (x,t) \in D_2.$$

Справедлива

Теорема 6. Пусть функция f(x) принадлежит классу Гельdepa $C^{\alpha}[0,1], \alpha > 0, u f(1) = 0$. Тогда решение задачи (13) -(14) существует, единственно и представимо в виде рядов (15).

В заключении выражаю искреннюю признательность своему научному руководителю, академику РАН Моисееву Е.И. за постоянное внимание к работе и всестороннюю поддержку. Хочу поблагодарить доктора физико-математических наук Капустина Н.Ю. за интерес к работе, консультации и ценные замечания.

Публикации

Гуляев Д.А. О равномерной сходимости спектральных разложений для спектральной задачи с граничными условиями третьего рода, одно из которых содержит спектральный параметр. //Дифференц. уравнения, 2011, Т.47, №10, С. 1503-1507
 Гуляев Д.А. О сходимости в классе W^m₂ спектральных разложений для спектральной задачи с граничными условиями третьего рода, одно из которых содержит спектральный параметр. //Дифференц. уравнения, 2012, Т.48, №10, С. 1450-1454
 Гуляев Д.А. Об одной смешанной задаче для уравнения теплопроводности, приводящей к спектральной задаче с граничными условиями третьего рода, одно из которых содержит спектральной задаче с граничными условиями третьего рода, одно из которых содержит спектральный параметр //Сборник молодых ученых факультета ВМК МГУ, №9, 2012